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Abstract
The treatment of exogenous events in planning is prac-
tically important in many domains. In this paper we
focus on planning with exogenous events that happen
at known times, and affect the plan actions by impos-
ing that the execution of certain plan actions must be
during some time windows. When actions have du-
rations, handling such constraints adds an extra dif-
ficulty to planning, which we address by integrating
temporal reasoning into planning. We propose a new
approach to planning in domains with durations and
time windows, combining graph-based planning and
disjunctive constraint-based temporal reasoning. Our
techniques are implemented in a planner that took part
in the 4th International Planning Competition showing
very good performance in many benchmark problems.

1 Introduction
In many real-world planning domains, the execution of cer-
tain actions can only occur during some predefined time win-
dows where one or more necessary conditions hold. For in-
stance, we can refuel a car at a gas station only during specific
period(s) of the day (when the gas station is open). The truth
of these conditions is determined by some exogenous events
that happen at known times, and that cannot be influenced by
the actions available to the planning agent (e.g., the closing
of the fuel station).

Several frameworks supporting durations and time win-
dows have been proposed (e.g.,[Vere, 1983; Muscettola,
1994; Laborie & Ghallab, 1995; Schwartz & Pollack, 2004]).
However, most of them are domain-dependent systems or
are not fast enough on large-scale problems. In this paper,
we propose a new approach to planning with these temporal
features, that combines graph-based planning and constraint-
based temporal reasoning.

The last two versions of the language of the Interna-
tional planning competition,PDDL2.1 andPDDL2.2, support
planning with action durations and deterministic exogenous
events[Fox & Long, 2003; 2004; Edelkamp & Hoffmann,
2004]. In particular, inPDDL2.2, deterministic exogenous
events can be represented bytimed initial literals, one of the
new PDDL features on which the 2004 competition focused.
Timed initial literals are stated in the description of the ini-
tial state of the planning problem through assertions of the
form “(at t L) ”, wheret is a real number, andL is a ground
literal whose predicate does not appear in the effects of any

domain action. The obvious meaning of(at t L) is thatL
is true from timet . A set of these assertions involving the
same ground predicate defines a sequence of disjoint time
windows over which the timed predicate holds. An example
in the known benchmark domain “ Zenotravel” is

(at 8 (open-fuelstation city1))
(at 12 (not (open-fuelstation city1)))
(at 15 (open-fuelstation city1))
(at 20 (not (open-fuelstation city1)))

These assertions define two time windows over which
(open-fuelstation city1) is true. A timed initial literal
is relevant to the planning process when it is a precondition
of a domain action, which we call atimed preconditionof the
action. Each timed precondition of an action can be seen as
a temporal scheduling constraint for the action, defining the
feasible time window(s) when the action can be executed.

When actions in a plan have durations and timed precondi-
tions, finding a valid plan is a complex task that requires inte-
grating planning and reasoning about time, to check whether
the execution of the planned actions can satisfy their schedul-
ing constraints. If an action in the plan cannot be scheduled,
the plan is not valid, and it must be revised.

The main contributions and organization of this work
are: (i) a new representation of temporal plans with ac-
tion durations and timed preconditions, integrating disjunc-
tive constraint-based temporal reasoning into a recent graph-
based approach to planning (Section 2); (ii) a polynomial
method for solving the disjunctive temporal reasoning prob-
lems that arise in our context (Section 2); (iii) some new local
search heuristics to guide the planning process using our rep-
resentation (Section 3); (iv) an experimental analysis evaluat-
ing an implementation of our approach, showing good perfor-
mance with respect to other recent domain-independent tem-
poral planners (Section 4).

2 Temporally Disjunctive Action Graph
In our approach, we represent a (partial) plan for a domain
with timed initial literals through an extension of the linear
action graph representation[Gerevini, et al., 2003], which we
call Temporally-Disjunctive Action Graph(TDA-graph).

2.1 Background: Linear Action Graph
A linear action graph (LA-graph)A for a planning problem
Π is a directed acyclic leveled graph alternating afact level,
and anaction level. Fact levels containfact nodes, each of
which is labeled by a ground predicate ofΠ. Each fact node



f at a levell is associated with ano-opaction node at level
l representing a dummy action having the predicate off as
its only precondition and effect. Each action level contains
one action node labeled by the name of a domain action that
it represents, and the no-op nodes corresponding to that level.

An action node labeleda at a levell is connected by incom-
ing edges from the fact nodes at levell representing the pre-
conditions ofa (precondition nodes), and by outgoing edges
to the fact nodes at levell+1 representing the effects ofa (ef-
fect nodes). The initial level contains the special action node
astart, and the last level the special action nodeaend. The
effect nodes ofastart represent the positive facts of the initial
state ofΠ, and the precondition nodes ofaend the goals ofΠ.

A pair of action nodes (possibly no-op nodes) can be con-
strained by apersistent mutex relation, i.e., a mutually ex-
clusive relation holding at every level of the graph, imposing
that the involved actions can never occur in parallel in a valid
plan. Such relations can be efficiently precomputed using an
algorithm given in[Gerevini, et al., 2003].

An LA-graphA also contains a set ofordering constraints
between actions in the (partial) plan represented by the graph.
These constraints are (i) constraints imposed during search to
deal with mutually exclusive actions: if an actiona at level
l of A is mutex with an actionb at a level afterl, thena
is constrained to finish before the start ofb; (ii) constraints
between actions implied by the causal structure of the plan:
if an actiona is used to achieve a precondition of an actionb,
thena is constrained to finish before the start ofb.

The effects of an action node can be automatically propa-
gated to the next levels of the graph through the correspond-
ing no-ops, until there is aninterfering action“blocking” the
propagation, or the last level of the graph has been reached.

2.2 Augmenting the LA-graph with Disjunctive
Temporal Constraints

Let p be a timed precondition over a setW (p) of time win-
dows. In the following,x− andx+ indicate the start time and
end time ofx, respectively, wherex is either a time window
or an action. We will describe our techniques focusing on ac-
tion preconditions that must hold during the whole execution
of the action (except at the end of the action, as for PDDL2.1
“over all” conditions), and on operator effects that hold at the
end of the action execution.1

In order to represent plans where actions have durations
and time windows for their possible scheduling, we augment
the ordering constraints of an LA graph with (i) actiondura-
tion constraintsand (ii) actionscheduling constraints. Du-
ration constraints have forma+ − a− = Dur(a), where
Dur(a) denotes the duration of an actiona.2 Duration
constraints are supported by the representation presented in
[Gerevini, et al., 2003], while the representation and treat-
ment of scheduling constraints are a major contribution of
this work.

Let π be the plan represented by an LA-graphA. It is
easy to see that the setC of the ordering constraints inA,
extended with the duration constraints of the actions inπ, can

1Our methods and planner support all the types of operator con-
dition and effect that can be specified in PDDL 2.1 and 2.2.

2The duration ofastart and aend is 0, a−start = a+
start and

a−end = a+
end.
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Figure 1: An example of LA-graph with nodes labeled byT -
values. Square nodes are action nodes; circle nodes are fact nodes.
Dashed edges form chains of no-ops blocked by mutex actions. The
T -values are the numbers inside round brackets. The action dura-
tions are the numbers inside square brackets. Unsupported precon-
dition nodes are labeled “(–)”.

be encoded into aSimple Temporal Problem(STP)[Dechter,
et al., 1991], i.e., a set of constraints of formy − x ≤ t,
wherey andx are point variables andt is a real number. For
instance, ifai ∈ π is used to support a precondition node of
aj , thena+

i − a−j ≤ 0 is in C; if ai andaj are two mutex
actions inπ andai is ordered beforeaj , thena+

i − a−j ≤ 0
is in C. Moreover, for every actiona ∈ π, the following STP-
constraints are inC:

a+ − a− ≤ Dur(a), a− − a+ ≤ −Dur(a).
A scheduling constraint imposes that the execution of an

action must occur during the time windows associated with
a timed precondition of the action. Syntactically, it is a dis-
junctive constraintc1 ∨ · · · ∨ cn, whereci is of the form

(y1
i − x1

i ≤ k1
i ) ∧ (y2

i − x2
i ≤ k2

i ),
y1

i , x1
i , y

2
i , x2

i are action start times or action end times, and
k1

i , k2
i ∈ R . For every actiona ∈ π with a timed precondition

p, the following disjunctive constraint is added toC:∨
w∈W (p)

((
a+
start − a− ≤ −w−

)
∧

(
a+ − a+

start ≤ w+
))

.

Definition 1 A temporally disjunctive action graph (TDA-
graph)is a 4-tuple〈A, T ,P, C〉 where
• A is a linear action graph;
• T is an assignment of real values to the nodes ofA;
• P is the set of time point variables corresponding to the

start times and end times of the actions labeling the ac-
tion nodes ofA;

• C is a set of ordering constraints, duration constraints
and scheduling constraints involving variables inP.

A TDA-graph 〈A, T ,P, C〉 represents the (partial) plan
formed by the actions labeling the action nodes ofA with
start times assigned byT . Figure 1 gives the LA-graph and
T -values of a simple TDA-graph. The ordering constraints
and duration constraints inC are:3

3For brevity, in our examples we omit the constraintsa+
start −

a−i ≤ 0 anda+
i − a−end ≤ 0, for each actionai.



a+
1 − a−3 ≤ 0, a+

2 − a−3 ≤ 0,

a+
1 − a−1 = 50, a+

2 − a−2 = 70, a+
3 − a−3 = 15.

Assuming thatp is a timed precondition ofa3 with windows
[25, 50) and[75, 100), the only scheduling constraint inC is:

(a+
start − a−3 ≤ −25 ∧ a+

3 − a+
start ≤ 50) ∨

(a+
start − a−3 ≤ −75 ∧ a+

3 − a+
start ≤ 100).

The pair〈P, C〉 defines aDisjunctive Temporal ProblemD
(DTP) [Stergiou & Koubarakis, 2000; Tsamardinos & Pol-
lack, 2003].4 Let Ds be the set of scheduling constraints in
D. We have thatD represents a setΘ of STPs, each of which
consists of the constraints inD−Ds and one disjunct (pair of
STP-constraints) for each disjunction in asubsetof Ds. We
call a consistent STP inΘ aninduced STPofD. If an induced
STP contains a disjunct for every disjunction inDs, we say
that such a (consistent) STP is acomplete induced STPof D.

An STP isconsistentiff it has a solution. Asolutionof
an STP is an assignment of real values to the variables of the
STP that is consistent with every constraint in the STP. Given
an induced STP, we can compute inO(n · c) time a solution
where each variable has the shortest possible distance from
a+

start [Dechter, et al., 1991; Gerevini & Cristani, 1997], for n
variables andc constraints. We call such a solution anoptimal
solutionfor the induced STP under consideration.

The values assigned byT to the action nodes ofA are the
action start times corresponding to an optimal solution of an
induced STP. We call these start times ascheduleof the ac-
tions inA. TheT value labeling a fact nodef of A is the
earliest timet = Ta + Dur(a) such thata supportsf in A,
anda starts atTa.

If the induced STP from which we derive a schedule is
incomplete,T may violate the scheduling constraint of some
action nodes, that we say areunscheduledin T .

The following definition gives a notion of optimality over
the complete induced STPs of a DTP that will be used in the
next section.

Definition 2 Given a DTPD with a point variablep, a com-
plete induced STP ofD is anoptimal induced STPofD for
p, iff it has a solution assigning top a value that is less than
or equal to the value assigned top by every solution of every
other complete induced STP ofD.

An optimal scheduleis an optimal solution of an optimal
induced STP fora−end. Note that an optimal solution mini-
mizes the makespan of the represented (possibly partial) plan.

2.3 Solving the DTP of a TDA-graph
In general, computing a complete induced STP of a DTP
(if it exists) is an NP-hard problem that can be solved by
a backtracking algorithm[Stergiou & Koubarakis, 2000;
Tsamardinos & Pollack, 2003]. However, given the particular
structure of the temporal constraints forming a TDA-graph,
we show that this task can be accomplished in polynomial

4The disjunctive constraints inC are not exactly in DTP-form,
i.e., a disjunctionc1 ∨ · · · ∨ cn, whereci is of formyi−xi ≤ ki, xi

andyi are time points, andki is a real number. However, it is easy
to see that every disjunctive constraint inC can be translated into
an equivalent conjunction of constraints in exact DTP-form. We use
our more compact notation for clarity and efficiency reasons.

Solve-DTP(X, S)

1. if X = ∅ then stopandreturn S;
2. x← SelectVariable(X); X ′ ← X − {x};
3. while D(x) 6= ∅ do
4. d← SelectValue(D(x)); D(x)← D(x)− {d};
5. S′ ← S ∪ {x← d};
6. D′(x)← D(x); /* Saving the domain values */
7. if ForwardChecking-DTP(X ′, S′) then
8. Solve-DTP(X ′, S′);
9. D(x)← D′(x); /* Restoring the domain values */
10. return fail; /* backtracking */

ForwardChecking-DTP(X, S)

1. forall x ∈ X do
2. forall d ∈ D(x) do
3. if notConsistency-STP(S ∪ {x← d}) then
4. D(x)← D(x)− {d};
5. if D(x) = ∅ then return false; /* dead-end */
6. return true.

Figure 2: Basic algorithm for solving a DTP. The input is the set
X of the meta-variables in the meta CSP of the DTP, and a (partial)
solutionS of the meta CSP.D(x) is a global variable storing the
current domain of the meta variablex.

time with a backtrack-free algorithm. Moreover, the algo-
rithm computes an optimal induced STP fora−end.

Without loss of generality, we can assume that each action
has at most one timed precondition. It is easy to see that we
can replace a set of timed preconditions of an actiona with
a single equivalent timed precondition, whose time windows
are obtained by intersecting the windows forming the differ-
ent original timed preconditions ofa.

As observed in[Stergiou & Koubarakis, 2000; Tsamardi-
nos & Pollack, 2003], a DTP can be seen as a “meta CSP”,
where the variables are the constraints, and the values of the
meta-variables are the disjuncts forming the constraints. The
constraints of the meta CSP are not explicitly stated. Instead,
they are implicitly defined as follows: an assignmentθ of
values to the meta-variables satisfies the constraints of the
meta CSP iffθ forms a consistent STP (an induced STP of
the DTP). A solution of the meta CSP is a complete induced
STP of the DTP.

Figure 2 shows an algorithm for solving the meta CSP of a
DTP[Tsamardinos & Pollack, 2003], which is a variant of the
forward-checking backtracking algorithm for solving gen-
eral CSPs. By appropriately choosing the next meta-variable
to handle (functionSelectVariable) and its value (functionSe-
lectValue), we can show that the algorithm finds a solution
(if one exists) withno backtracking. Moreover, by a simple
modification of the basic algorithm, we can derive an algo-
rithm that is backtrack free even when the meta CSP has no
solution. This can be achieved by exploiting the information
in the LA-graphA of the TDA-graph for decomposing its
DTPD into a sequence of “growing DTPs”. I.e.,

D = Dlast ⊃ Dlast−1 ⊃ ... ⊃ D1,

where (i) last is the number of the levels inA, (ii) the vari-
ablesVi of Di (i = 1..last) are all the variables ofD corre-
sponding to the action nodes inA up to leveli, and (iii) the
constraints ofDi are all the constraints ofD involving only



variables inVi. From the decomposed DTP, we can derive an
ordered partition of the set of meta-variablesX in the meta
CSP of the original DTP

X = X1 ∪X2 ∪ ... ∪Xlast ,
whereXi is the set of the meta-variables corresponding to the
constraints inDi −Di−1, if i > 1, and inD1 otherwise.

This ordered partition is used to define the order in which
SelectVariable chooses the next variable to handle, which is
crucial to avoid backtrack: every variable with a single do-
main value (i.e., an ordering constraint or duration constraint)
is selected before every variable with more than one possible
value (i.e., a scheduling constraint with more than one time
window); if xi ∈ Xi, xj ∈ Xj andi < j, thenxi is selected
beforexj .

Also the order in whichSelectValue chooses the value for a
meta-variable is important: given a meta-variable with more
than one value, we choose the value corresponding to the ear-
liest available time window. E.g., if the current domain of the
meta-variable is⋃

i=1..m

{(
a+
start − a− ≤ −k−i

)
∧

(
a+ − a+

start ≤ k+
i

)}
,

thenSelectValue chooses thej-th value (time window) such
that|k−j | < |k−h |, for everyh ∈ {1, ...,m}, h 6= j.

By using these techniques for selecting the next variable to
handle and its domain value in the algorithm of Figure 2, we
can derive the following result.5

Theorem 1 Given a DTPD for a TDA-graph, if the meta
CSPX of D is solvable, thenSolve-DTP finds a solution of
X with no backtracking. Moreover, this solution is an optimal
induced STP ofD for a−end.

As a consequence of the previous theorem, we have that,
if Solve-DTP performs backtracking (step 10), then the DTP
under consideration has no solution. Thus, we can obtain a
backtrack free algorithm by replacing step 10 with

10. stopandreturn fail.
It is easy to see that in the modified algorithm, calledSolve-

DTP+, every variable is instantiated at most once with the
same value. It follows that, under the assumptions that we
have a constant maximum number of action preconditions
and, for every scheduling constraint, a constant maximum
number of windows, the total runtime complexity ofSolve-
DTP+ is polynomial.
Theorem 2 Given a TDA-graphG with DTPD, Solve-DTP+

processes the meta CSP corresponding toD in polynomial
time with respect to the number of action nodes inG.

The actual algorithm that we developed for our planner to
find an induced STP for the DTP of a TDA-graph contains
some improvements making it more efficient. For lack of
space and simplicity of presentation, we omit a detailed de-
scription of the improved algorithm, and we indicate only the
main differences, which are the following ones:
• the consistency of the STP formed by the values of all

the variables of the meta CSPX with single-valued do-
mains can be checked at the beginning ofSolve-DTP,
using a single-source shortest-path algorithm: if such an
STP is inconsistent, thenX has no solution;

5For lack of space, the proofs are omitted; they are available in
an extended version of this paper[Gerevini, et al., 2005].

• forward checking is performed only once for each meta-
variable: if the first value chosen bySelectValue is not
feasible (i.e.,ForwardChecking-DTP returnsfalse), then
X has no solution, and thus we can stop the algorithm;

• finally, the improved algorithm is incremental since, as
we will see in the next section, at each search step the
DTP of the TDA-graph is updated as a consequence of
adding a new action node to the graph, or removing an
existing one.

Moreover, in order to use the local search techniques de-
scribed in the next section, we need another change to the ba-
sic algorithm: when the algorithm detects thatX has no solu-
tion, instead of returning failure, (i) it processes the next meta
variables, and (ii) when it terminates, it returns the (partial)
induced STPS formed by the STP-constraints of the DTP
and the values assigned to the meta-variables. The optimal
solution ofS defines theT -assignment of the TDA-graph.

In the next section,SG denotes the induced STP for the
DTP of a TDA-graphG computed by our method.

3 Local Search Techniques for TDA-Graphs
A TDA-graph 〈A, T ,P, C〉 may contain two types offlaw:
unsupported precondition nodes inA (propositional flaws),
action nodes inA that are unscheduled inT (temporal flaws).
If a level ofA contains a flaw, we say that this level is flawed.
A TDA-graph with no flawed level represents a valid plan,
and it is called asolution graph.

In this section, we present new heuristics for searching a
solution graph in the space of TDA-graphs. These heuristics
are used to guide a local search procedure, calledWalkplan,
that was originally proposed in[Gerevini, et al., 2003], and
that is the heart of search engine of our planner.

The initial TDA-graph contains onlyastart andaend. Each
search step identifies the neighborhoodN(G) (successor
states) of the current TDA-graphG (search state), which is
a set of TDA-graphs obtained fromG by adding ahelpful ac-
tion nodeor removing aharmful action nodein the attempt
to repair theearliestflawed level ofG.6 In the following,ai

denotes an action nodea at leveli of A, andla the level ofa.
Given a flawed levell of G, an action nodeai is helpfulfor

l if its insertion intoG at a leveli ≤ l removes a propositional
flaw at l; ai is harmful for l if its removalfrom a leveli ≤ l
of G (i) would remove a propositional flaw atl, or (ii) would
decrease theT -value ofal, if al is unscheduled (intuitively,
al is unscheduled ifC forces it to start “too late”).

The addition/removal of an action nodea requires us to
update the DTP ofG by adding/removing some ordering con-
straints betweena and other actions in the LA-graph ofG, the
duration constraints ofa, and the scheduling constraint ofa
(if any). From the updated DTPD, we can use the method
described in the previous section to reviseT , and to compute
a possibly new schedule of the actions inG (i.e., an optimal
solution ofSG).

The elements inN(G) are evaluated using aheuristic eval-
uation functionE consisting of two weighted terms, estimat-
ing the additionalsearch costand temporal costof the el-

6When we add an action node, the graph is extended by one level,
and when we remove an action node, it is “shrunk” by one level.
More details in[Gerevini, et al., 2003].



ements (i.e., the number of search steps required to find a
solution graph and the plan makespan, respectively). An ele-
ment with the lowest cost is then selected fromN(G) using a
“noise parameter” randomizing the search to escape from lo-
cal minima[Gerevini, et al., 2003]. For lack of space, in the
rest of this section we focus only on the search cost term ofE.

The search cost of adding an helpful action nodea to
G is estimated by constructing atemporal relaxed planπ
achieving (1) the unsupported precondition nodes ofa, (2)
the propositional flaws remaining atl after addinga, and (3)
the supported precondition nodes of other action nodes inG
that would becomeunsupported by addinga. Moreover, we
count the number of: (4) action nodes that would become
unscheduled by addinga to G, (5) unsatisfied timed precon-
ditions ofa, (6) actions ofπ with a scheduling constraint that
we estimate cannot be satisfied in the context ofG. The search
cost of addinga to G is the number of actions inπ plus (4),
(5) and (6).

The evaluation of a TDA-graph derived byremovingan
harmful action nodea is similar, withπ achieving the precon-
dition nodes supported bya that would becomeunsupported
by removinga and, whenla precedes the flawed levell under
reparation, the unsupported precondition nodes at levell that
would not become supported by removinga.

π is constructed using a polymomial backward process
similar to the algorithm proposed in[Gerevini, et al., 2003],
giving in output two values: a set of actions forming a
(sub)relaxed plan, and its estimated earliest finishing time.
The initial stateI is the state obtained by applying the actions
of G up to levella − 1, ordered according to their levels.

The main difference in the extended algorithm concerns
the choice of the actions forming the relaxed plan. The ac-
tion b chosen to achieve a (sub)goalg is an action minimiz-
ing the sum of (i) the estimated minimum number of addi-
tional actions required to support its propositional precondi-
tions, (ii) the number of supported precondition nodes in the
LA-graph that would become unsupported by addingb to G,
(iii) the number of timed preconditions ofb that we estimate
would be unsatisfied inG extended withπ (TimedPre(b));
and (iv) the number of action nodes scheduled inT that
we estimated would become unscheduled by addingb to
G (TimeThreats(b)). (i)-(ii) are computed as described in
[Gerevini, et al., 2003]; (iii)-(iv) are new components of the
action selection method, and they are computed as follows.

In order to computeTimedPre(b), we estimate the earliest
start time ofb (Est(b)) and the earliest finishing time ofb
(Eft(b)). Using these values, we count the number of the
timed preconditions ofb that cannot be satisfied.Eft(b) is
Est(b) + Dur(b), while Est(b) is the maximum over

• the lowest earliest start time ofb computed by an ex-
tension of the reachability analysis algorithm given in
[Gerevini, et al., 2003], which derives a lower bound on
the start time of each domain action;

• the T -values of the action nodesci, with i < la, that
are mutex withb (because the addition ofb to G would
determine the addition ofc+

i − b− ≤ 0 to G);
• the maximum over an estimated lower bound on the time

when all the preconditions ofb are achieved in relaxed
plan (this estimate is computed from the causal structure
of the relaxed plan, the duration and scheduling con-

straints of its actions, and theT -values of the facts in
the initial stateI).

In order to computeTimeThreats(b), we use a notion of
time slackbetween action nodes.
Definition 3 Given two action nodesa1 and a2 of a TDA-
graph〈A, T ,P, C〉 such thatC |= a1+ < a2−, slack(a1, a2)
is the maximum time by which theT -value ofa1− can be con-
sistently increased inSG without violating the time window
chosen for schedulinga2.

To estimate whetherb is a time threat for an action node
ak (l ≤ k), we check if∆(πb, al) > Slack(al, ak) holds,
whereπb is the portion of the relaxed plan computed so far,
and∆(πb, al) estimates the delay of the start time ofal that
the addition of the actions inπb to G would determine.

4 Experimental Results
We have implemented our approach in a planner calledLPG-
td, which obtained the 2nd prize in the suboptimal metric-
temporal track of the 4th International Planning Competition
(IPC-4). LPG-td performed especially well in the domain
variants with timed initial literals, in terms of both CPU-time
to find a plan and quality of the best plan computed with
a CPU-time limit of 30 minutes (LPG-td is an incremental
planner finding a succession of valid plans). In this section,
we present some experimental results using the test problems
of IPC-4.7 The problems in theAirport domain specify at
most 6 time windows for each timed precondition, the prob-
lems in theSatellite domain at most 3 windows, while
those in the other domains only one time window. Additional
results are available from the web sites of our planner and
of IPC-4, and in a technical report including an experimental
analysis on solving problems with many windows associated
with the timed preconditions[Gerevini, et al., 2005].

Figure 3 shows the CPU-time ofLPG-td in three IPC-4 do-
mains with respect to the best among the other three planners
of IPC-4 that support timed initial literals:SGPLAN, P-MEP,
and TILSAPA.8 In these domains,LPG-td is generally faster
than the other planners and solves more problems.

Table 1 gives a summary of the results for all the IPC-4
domain variants with timed initial literals (252 test problems
in total). We compareLPG-td’s results with the best results
over the corresponding results ofall the other IPC-4 planners
(“AllOthers”). In general,LPG-td solves more problems than
AllOthers; the percentage of problems in which it is faster is
higher than the one in which it is slower; and the percentage
in which it produces better quality plans is much higher.

Finally, it is worth noting that, if in the CPU-time compar-
ison we consider only problems whereLPG-td is at least one
order of magnitude faster (slower) than AllOthers, then the
results in the 3rd column of Table 1 are even more favorable
to LPG-td. LPG-td is faster in 31% of the problems, and it is
slower in 13% of the problems.

7All tests were conducted on an Intel Xeon(tm) 3 GHz, 1 Gbytes
of RAM. For a description and formalization of the IPC-4 bench-
mark problems and domains, seehttp://ls5-www.cs.uni-
dortmund.de/ ∼edelkamp/ipc-4/index.html .

8An abstract of every IPC-4 planner is available in[Edelkamp, et
al., 2004]). LPG-td andTILSAPA are the only planners of IPC-4 that
addressed the variant ofPipesWorld with timed initial literals;
TILSAPA did not addressUMTS-flaw with timed initial literals.
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Figure 3:CPU-times ofLPG-td, P-MEP, SGPLAN, andTILSAPA in three IPC-4 test domains with timed initial literals. On the x-axis we have
the problem names simplified by numbers. On the y-axis, we have the CPU-times in logarithmic scale.

IPC-4 Problems CPU-time Plan quality
domain solved better (worse) better (worse)
Airport 90 (86) 86 (4) 58 (5)
PipesWorld 73 (10) 73 (0) 67 (0)
Sat-Complex 53 (67) 6 (67) 71 (12)
Sat-Time 53 (67) 6 (64) 59 (35)
UMTS-Flaw 100 (54) 100 (0) 82 (0)
UMTS 100 (100) 0 (88) 100 (0)
Total 81.3 (67.8) 47.2 (39.3) 73.2 (6.4)

Table 1:A comparison ofLPG-td and the best over the results ofall
the other IPC-4 planners. Summary results in terms of: % of prob-
lems solved byLPG and AllOthers (in brackets); % of problems in
which LPG-td is faster (slower in brackets); % of problems in which
LPG-td produces a plan with shorter makespan (longer in brackets).

5 Conclusions

We have presented an approach to temporal planning for
domains where actions have durations and must be exe-
cuted during certain time windows. This allows us to deal
with deterministic exogenous events, which is important in
many real-world planning domains. Our approach combines
constraint-based temporal reasoning and a recent graph-based
method for planning. We propose a new plan representation
and search space, a polynomial algorithm for temporal con-
straint reasoning during search, and some local search tech-
niques for planning that exploit temporal information. An
analysis of the IPC-4 results show that our planner performs
very well compared to other recent temporal planners. We
believe that our temporal reasoning results can be exploited
also in the context of other approaches to planning.

Like our planner,SAPA uses a relaxed plan heuristic to
guide the search[Do et al., 2004]. However,SAPA uses a time
slack analysis for selecting these actions that is limited to the
actions of the relaxed plan, while our heuristics consider also
the actions of the “real” plan under construction. Other very
recent planners supporting time windows includeDT-POPand
MIPS. Edelkamp proposes a method for handling timed pre-
conditions inMIPS with only one time window[Edelkamp,
2004]. DT-POPextends POP-planning with DTPs[Schwartz
& Pollack, 2004]. DT-POP supports more temporal features
thanLPG-td, but it is less efficient, and it does not exploit the
plan representation that we use for achieving tractable tempo-
ral reasoning during planning. For a more detailed discussion
of related work see[Gerevini, et al., 2005].
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