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Abstract. We present some techniques for handling planning prob-3rd IPC, whileLPG-1PC3 solves only 59.9% of them, and Metrit

lems with numerical expressions that can be specified using the staf8.5% of them. Moreover, in 40% of the problem tested, the CPU-
dard planning languagebppL. These techniques are implemented time required by the new version oG is at least one order of mag-

in LPG, a fully-automated planner based on local search that wasitude less than the CPU-time requiredum®G-1PC3. The experimen-
awarded at the third international planning competition (2002). Firsttal results show also that the new version bt generates plans that

we present a plan representation for handling numerical expressiomenerally have better quality than those produced by Metric-

called Numerical Action Graph (NA-graph). Then, we propose some Section 2 introduces NA-graphs; Section 3 describes the basic
extensions of PG to guide a search process where the search statdscal search procedure, the new search neighborhood, the heuris-
are NA-graphs. Finally, we give some experimental results showingic evaluation of the search neighborhood, and a revised strategy to
that our techniques are very effective in terms of CPU-time or plarrestart the search for improving plan quality; Section 4 gives the re-
quality, and that they significantly improve the previous version ofsults of our experimental analysis using the numerical domain vari-
the planner. ants of the 3rd IPC; finally, Section 5 gives the conclusions.

1 Introduction 2 Numerical Action Graph

Local search is a powerful method for domain-independent planningn this section, we present our plan representation to handle numeri-
as demonstrated by two planners awarded at the second and thicdl domains, which is an extension of thetion graph[4], a partic-
international planning competitions (IPG) [6] andLPG [5]. ular subgraph of the well-known planning graph representation [1].

In this paper we present some extensionap& for handling A numerical action graph (NA-graph) A is a directed acyclic
planning problems involving numerical expressions specified withleveled graph alternating &act level and anaction level Fact
the standard planning languag®DL [3, 8]. In PDDL, numerical levels containpropositional nodesand numerical nodeslabelled
expressions are constructed usimgmitive numerical expressions with propositions and numerical expressions, respectively. Numer-
and arithmetic operators. Numerical action preconditionscose- ical nodes are of two typesumerical precondition nodetabelled
parison operatorgsuch as<, <, =, >, and>) involving pairs of  with numerical comparisons, ammerical fluent nodedabelled
numerical expressions. Numerical action effectsasgignment op-  with primitive numerical expressions. Each numerical fluent node la-
erators (such asassign , increase , decrease , scale-up , and belledz at a level has a real value associated with it, that we denote
scale-down ) for updating the value of some primitive numerical with NumVal(z,1). NumVal(x,!) represents the value of the nu-
expression. Primitive numerical expressions are functions involvingnerical primitive expression at the world state corresponding to
domain objects (e.gfuel(Al) , whose value represents the amount levell of A. The valueNumV al(x,!) of a numerical fluent node
of fuel available foral). at levell (with [ > 1) is derived fromNumVal(z,l — 1) and the

The paper has three main contributions: (i) we present a plan reprerumerical effects of the action at levet 1 (if any). NumVal(z, 1)
sentation for handling numerical expressions, that welatherical  is the value ofc defined in the initial state of the planning problem.
Action Graph(NA-graphj; (ii) we propose new heuristic functions Each action level contains ometion noddabelled with the name
guiding a local search process where the search states are NA-grapb$;a domain action, and any number rmf-op nodegdefined as in
(iii) we experimentally evaluate the proposed techniques using thél]). Any action node labelled at a levell is connected by (ipre-
numerical test problems of the 3rd IPC. condition edgeto the propositional/numerical nodes at leegpre-

The results of the 3rd IPC showed tha&G is generally an effi-  senting the preconditions af and (ii) by effect edgeto the propo-
cient planner [7]. However, often the metric versiorrefsolved the  sitional/fluent nodes at levék- 1 representing the effects af Each
numerical test problems more quickly than the versionms that  effect edge to a numerical fluent node is labelled with an assignment
took part in the competition (we will call such a versioRG-1PC3). operator. Finally, ifa is an action node of4, then the precondition
LPG-IPC3 does not include the neighborhood evaluation functionsof a, the effect nodes aof, and the involved numerical fluent nodes
presented in this paper. These new functions give a much more aere in.A, together with the edges connecting thena to
curate estimate of the quality of the elements in the neighborhood, We assume that the problem goals are the preconditions of a spe-
in terms of search cost to reach a valid plan, or execution cost of theial actiona.,q; while the initial facts and initial numerical fluent
plan under construction. values are determined by the effects of a special actian-:.

The experimental analysis in this paper show that the new version Figure 1 gives an example of NA-graph for a simple logistics
of LPG solves more than 93.2% of the numerical test problems of thegroblem with numerical expressions (one airplakie,one package,



Goal Level 3.1 Background: Walkplan

0 ‘\[ ] The general scheme for searching a solution graph (a final state of
at(P1,L1)

[at(Pl,L2) ] the search) consists of a local search process in the space of all NA-
— == graphs of the planning problem, starting from an initial NA-graph
containing onlyas¢a,+ @ndacnd-

‘.

No-o% Each basic search step selects an inconsistenicythe current
50 \ T Level2 NA-graph.A and identifies theneighborhoodN (o, A) of A for o,
i.e., the set of the NA-graphs obtained froiby applying a graph
[fueI(Al) > 100} [at(Pl L2) } e . .
. - 4" modification that resolves, or that simplyhelpsto resolves. The el-
I assign(uel(Al)50) - ements of the neighborhood are weighed according ®vafuation
oo functionestimating their quality, and an element with the best quality
‘No 04 refuel(AL,L1) <27\ No-op @ is then considered as the next possible NA-graph (search state). The
0 | T Levell quality of a NA-graph depends on the number of the inconsistencies

[fueI(Al) < 50 j [at(Pl,Lz) j it contains, the estimated number of the search steps required to re-

,,,,,,, solve them, and the overall execution or temporal cost (depending on
the plan metric specified) of the represented plan.
The search strategy used byG is Walkplan, a method similar
to the well-known procedurevalksat for solving propositional sat-
Figure 1. NA-graph for a simple logistics problem with numerical isfiability problems [9]. According tavalkplan, the best element in

expressions. Numerical fluent nodes are marked with the corresponding the neighborhood is the NA-graph which has kbwest decrease of
values fly(A1,L1,L2) blocks the propagation af(A1,L1) atlevel 2,

while refuel(A1,L1) blocks the propagation dfiel(A1)<50  at level 1. q_ua"ty With res_pect to the curren_t NA-graph, i.e.,.it does not con-
sider possible improvements. This strategy use®iae parameter

P1, and two locations,.1 andL2). The value ofiuel(al) is0at - Given a NA-graphA and an inconsistenay, if there is a modi-

level 1,50 at level 2 (because of the effestsign(fuel(A1),50) fication for o that does not decrease the quality.4fthen the cor-
of the actionrefuel(A1,L1) ), and it is —50 at the goal level ~responding NA-graph is chosen as the next search state; otherwise,
(because of the effeatecrease(fuel(Al),100) of the action  With probabilityp one of the graphs iV (o, A) is chosen randomly,
fly(ALLLL2) ). and with probabilityl — p the next NA-graph is chosen according to

A numerical action graph can contain someonsistenciesi.e.,  the minimum value of the evaluation function.

an action with a precondition node that is sofpported A numeri-
cal action graph without inconsistencies represents a valid plan, an . _
it is calledsolution graph A propositional precondition nodgat a §,2 Neighborhood and Heuristics for NA-graphs

level I of a NA-graph.A is supported if there is an action node (or

a no-op node) at levél— 1 of A connected t@ by an effect edge.
P ) A @ by g inconsistencys is the set of NA-graphs that can be derived frgin

A numerical precondition node at a levek supported if the corre- ina th i de with diti ddi i
sponding numerical comparison is satisfied according to the valuel'gy removing the action node with preconditioror adding an action

of the numerical fluent nodes at levielFor example, the numeri- nhode tgat |s‘n(cejIpZJIfor . Whlflr;(\;vei ?dd ar;];ltctéon nolde "ﬁa IeX/,(zI
cal precondition nodéuel(Al) <50 at level 1 in Figure 1 is sup- the nodes and edges at eac 2t L are shitied one level forward.

ported because the value assignefiétial)  atlevel 1 is O: on the Slmllarlly, WTen we remove an action node, the NA-graph is “shrunk
contrary,fuel(A1) >100 at level 2 is not supported, because of the y one level.

actionrefuel(ALL1)  atlevel 1 assigningO to fuel(AL) Definition (Helpful Action Node) Given an unsupported precondi-
The definition of NA-graph can be refined by including the (au- ;01 hodeo at a levell of the current NA-graphd, if o is a propo-

tomatic) propagation of supported propositional nodes to the nex{iona) precondition, we say thatis a helpful action nodédor o if
levels of the graph through the corresponding no-ops, until there iﬁs insertion into.A at a leveli < | makess supported: ifo is a nu-
an interfering actiorblockingthe propagation, or the goal level has merical precondition node Iab_elledacpl,compea:pz), we say that:
been reached. A similar propagation can be done also for supportqg a helpful action noddor ¢ if its insertion into.A at a leveli <[

numerical precondition nodes (for an example, see Figure 1). decreases the gap between the valuesipf andexp: at levell of
In the rest of the paper we will use the following notionnpimer- A with respect to comp.

ical state

The search neighborhoad(o, .A) of a NA-graphA for the selected

For example, consider the unsupported preconditior) (

Definition (Numerical State) A numerical states a pair (I, N), ] ’ )
fuel(Al) >100 at level 2 of Figure 1. An action node with the

whereT is a set of propositional facts, anl¥y is an assignment of

real values to the domain numerical fluents. numerical eﬁecﬁncreasg(fuel(Al),50) _ that is added aF IQVQI
2 is helpful for o, while such an action is not helpful if it is

Each level of a NA-graphA identifies a particular numerical state, added at level 1 (because of the effassign(fuel(A1),50) of

(I, N1), obtained by applying to the initial numerical state of the refuel(A1,L1) ).

planning problem the actions i up to levell —1, ordered according The addition/removal of an action nodeat levell of A may re-

to the corresponding level. quire a revision of the values associated with the numerical fluents at
the next levels that are influenced by the numerical effects &fs-

3 Local Search in the Space of NA-graphs sentially, the algorithm for updating such values performs a forward

In this section, we present some techniques for searching in the spacernis definition is similar to the one formulated by Hoffmann in [6], except
of NA-graphs that are implemented in the new versionras. that our approach handles both linear and non-linear numerical expressions.



EvalAdd(a) RelaxedNumplan(G, (I, N;), A)

Input An action node: that does not belong to the current NA-graph. Input A set of goalsG, an initial numerical statél, N'), a setA of pairs(a, t);
Output A set of pairs of typéaction, number of occurrences) Output A set of pairs{ (a, t) } estimating the minimal set of actions with the relative
. number of occurrences that are required for achied@ng
1. | = Level(a);
2. I, < SupportedFacts(l); 7. At .
3. Ny — {NumVal(z,!l) | z is a numerical fluert, % fCo:rja] gGE é,dlg I Acts — 4]
4. Rplan < RelaxedNumplan(Pre(a), (I;, N;), 0); 3 o U, c aAdd(a);
. : ag Acts ’

5. I} « I U Add(a) — Threats(a); 4. (f min, Vinaz ) = ComputeMinMax(N, Acts);
6. Nﬁ «— UpdateNumVal(N;, a); 5. if g € F andg is not satisfied usin’,,,;», andV,,, . then
7. Rpl RelaxedNumplan(Threats(a), (I;7, N;'), Rplan); 6. (b, tb) «— ChooseAction(g);
8 Rplan - Re ?xe Uumpajrl( rea s(a): (17 NiT), Rplan) 7. Rplan < RelaxedNumplan(Pre(b), (I, N), Acts);

- Rplan — Rplan U {(a, Times(a, g))}; 8 forall (a,t) € Rplan such thau ="b do
9. return Rplan. : a, pran 1aa =

9. Rplan «— Rplan — (a,t);
10. th — tb + t;
EvalDel(a) 11. Acts «— Rplan U {(b, tb)};
: 12.return Acts.

Input An action node: that belongs to the current NA-graph.

Output A set of pairs of typgaction,occurrences) Figure 3. Algorithm for computing a relaxed plan achieving a set of action
1. | = Level(a); preconditions from the numerical statg V).
2. I} «— SupportedFacts(l);
3. Ny — {NumVal(z,!l) | xis a numerical fluerjt, i ifvi i i i
2 Rplan ' RelaxedNamplan(UnsupEacts(@). [T, N1), 0): the only action modifyinge increases it by 10 units, t_hen to s_upport
5. return Rplan. x > 25 we need three of such actions. In the following, we indicate

t occurrences of an actianwith the pair(a, t).

The actions inr are used to define a heuristic estimate of the ad-
propagation starting from the effectsafand updating level by level ditional search cost that would be introduced by the new action
the numerical fluents frorh+ 1 up to the goal level. (SearchCost(a)). This estimate also takes account of the number of

The elements of the neighborhood are evaluated according to g#Hpported preconditions that would become unsupported by adding
action evaluation functiotZ estimating the cost of addindZ(a)?)  the actions int to A (because of their negative or numerical effects).
or removing (2(a)") an action node. ForsTriPsdomains extended ~The set of these subverted preconditions is denotefifbyats(a).
with numerical expressiong; consists of two weighed terms, eval- For example, ifa has the numerical effectecrease(x,50)  and
uating the search cost and the quality of the current partial plan: ~ NumVal(z,1) = 120, then the supported numerical precondition

Figure 2.  Algorithms estimating the addition/removal of an action nade

E(a)’ = a - SearchCost(a)' £ 8 - EzecCost(a)’, X < 100 at levell becomes uqsupported when addimgat llclevel .
1. Note thatLPG-1PC3 does not include numerical preconditions in
E(a)" = a- SearchCost(a)” £ 3 - ExecCost(a)". Threats(a).

The first term of £ estimates the increase of the number of search EzecCost(a) is an estimate of the additional execution cost that
steps needed to reach a solution graph; the second estimates the euld be required to satisfy the preconditionszpfind it is derived
crease of the plan execution cost. The coefficients of these termby summing the execution cost of eactin 7 (Cost(a’)), multiplied
which are automatically set by our planner, are used to normalizy the corresponding number of occurrentégore formally,

them, and to weigh their relative importance. The sign of the second i ,

term depends from the plan metric expression (more details on this €47 chCost(a)” = Dot D [Threats(a),

in Section 33) . tst(a/,t)emr a’st(a’t)em
Suppose that we are evaluating the additior aft level! of the EzecCost(a)" = Z Cost(a') - t,
current NA-graphA. The terms ofF are heuristically estimated by a’'st(a’ t)em

computing a relaxed plan. 7 consists of an estimated minimal set of \yhere the relaxed plam is computed byEvalAdd. The costs for
actions to achieve the unsupported preconditions and the sel E(a)" are defined in a similar way, and are computedebgiDel.
of the preconditions of other actions.ithat would become unsup-  Figure 2 shows the main steps®falAdd andEvalDel, that we now
ported by adding: (because it would block the no-op propagation gescribe.

currently used to support such preconditiohs).is relaxed in the The relaxed subplans usedtnalAdd andEvalDel are computed
sense that (i) it does not consider the negative interference with othfy rejaxedNumplan (see Figure 3). Given a sét of (propositional
aCtiOns in the relaxed p|an; (ll) the possible minimum and maXimUrnor numeriCaD goa| facts and a numerical StmeNl% RelaxedNum-
values of the |_nvolved numt_arlcal_expressmnsr‘amotor_l_l_calI)com- plan computes an estimated minimal settc{s) of actions required
puted according to the actions in the relaxed plan; (iii) the comparyg reachG from (I,, N}). SupportedFacts(l) denotes the set of
isons of the numerical action preconditions are evaluated in a relaxegropositional facts that are true after executing the actionsatlev-
way, using the estimated min and max values of the involved numerg|s preceding from the initial numerical statél;, N1 ); Pre(a) the
ical expressions. By monotonic computation of the min/max valuesyreconditions ofi; Add(a) the propositional effects af; Vi, and

of a numerical fluent: we mean the following: if an actioninin- v, the sets of the min and max values of the numerical fluents, re-

creases:, we increase the max of, if an action inw decreases,  gpectively. Such values are (monotonically) computeGdyputeM-

we decrease the min of - ) inMax from the values ofV, by applying the numerical effects of the
The relaxed subplan of for the preconditions of is computed  5ctions inActs.

from the numerical stat¢/;, N;). The relaxed subplan of for After having computed the numerical stéfe, NN, ), in step 4Eval-

achievingX is computed from(/;, N;) modified by applying the ef-  Aqq usesRelaxedNumplan to compute a relaxed subpla®jlan)
fects ofa. This subplan can reuse any acti@hin the other relaxed oy achieving the preconditions of the new actierirom (I;, N;).
subplanr previously computed for the preconditionsiofNote that,  steps 5 updates the propositional facts Ipfusing Add(a) and
in order to support a numerical precondition, it can be necessary @ 4rcqts(a). In step 6,UpdateNumval updates the valued of the
use more than one action. For instance, if we have 0 in N;,and  humerical fluents using the numerical effectsioStep 7 computes

2 Note that inLPG-1PC3 X contains only propositional preconditions, while 3 LPG pre-computes the action costs using the plan metric specified in the
hereX can contain numerical preconditions as well. problem description (for more detail see [5]).



a relaxed plan fofl'hreats(a), possibly reusing the actions form-
ing the previously computed relaxed subplan. Finally, step 8 add
the pair(a, Times(a, g)) to =, whereT'imes(a, g) is the minimum
number of occurrences af required to support the preconditign
under consideration in the current search step.

EvalDel is simpler tharEvalAdd, because the only new inconsis-
tencies that can be generated by remowirnfgom the current NA-
graph are the precondition nodes supportedzlthat become un-

Problems LPG-Speed LPG-quality
Domain solved better worse better worse
s LPG | FF thanFr | thanrr || thanFr | thanrr
Numeric
Depots 21 19 13 8 15 1
DriverLog 20 16 9 11 16 0
Rovers 20 9 11 7 0 0
Satellite 19 13 9 10 13 0
Settlers 11 4 9 0 0 2
ZenoTravel 20 20 1 18 15 4
HardNumeric
DriverLog 20 16 10 9 16 0
Satellite 20 14 6 14 14 0

supportedUnsupFacts(a) denotes the set of these nodes. Step
computes a relaxed plan féfnsupFacts(a) from the numerical
state(I;, N;) computed by steps 2 and 3.

The set of pairgaction, number of occurrencesturned byRe-
laxedNumplan is derived by computing a relaxed plaRlan) for
G, starting from a possibly non-empty input set of pairf that
can be reused to achieve the action preconditions or goals of the r
laxed problemRelaxedNumplan constructsRplan through a back-
ward process where the pair chosen to achieve a (subjgzab
pair (b, Times(b, g)) obtained by combining the following require-
ments: (1)b is an helpful action fog; (2) all preconditions ob are
reachable from(I;, N;); (3) reachability of the preconditions &f
requires a minimum number of actions, estimated as the maximu

ofal o o 0 o o o

Table 1. Summary of the comparison betweerc and MetricFF in terms
of number of problems solved, CPU-time and plan quality.

high execution costs. For plan metric expressions requiriagimiz-

ing a numerical expressionpG addssome expensive actions I

The “HardNumeric” variant oBatellite used in the 3rd IPC is

an example of domain requiring maximizing a numerical expression.
In LPG-1PC3, both the two terms of the evaluation functiéhare

positive quantities, and the planner is not capable of finding plans

of good quality for maximization problems. In the new version of

rhPG, the sign of the term for the execution cost can be either posi-

of the heuristic number of actions required to support each precont_ive or negative. Specifically, it is positive when the planner tries to

dition p of b at levell (Num_acts(p,1)); (4) b subverts the mini-
mum number of supported precondition nodesdi{T hreats(b));
(5) b is applied the minimum number of times required to satis
g (Times(b, g)). More precisely,ChooseAction(g) returns a pair
(b, Times(b, g)) such thab is an action satisfying

tt

whereF is the set of the (positive) effects of the actions currently in
Acts A, is the set of the actions with effegi(if ¢ is a propositional
precondition) or with an effect that reduces the gap in the numeric
comparison of; (if g is a numerical precondition). A “relaxed” check
of such a reduction is done using the valued’gf,, andV,,,q... For
instance, suppose thatis x > y, that according td/,,:», y = 25,
and that according t¥,,.. x = 15. An action with an effect assign-
ing 10 tox does not belong tal,, while an action assigning 20 o
belongs ta4,.

Numc_acts(p,l) is computed byreachability analysisusing a
polynomial algorithms similar to the one proposed in [5]. The main
differences, that for lack of space here we do not describe in d
tail, concern numerical preconditions. LrG-1PC3, the reachability

fy

ARGMIN

N —
\RGMIN MAX um_acts(p, 1)

Threats Ti , ,
pEPre(c)—F ) + |Threats(c)| + Times(c g)}

analysis simply ignores the numerical preconditions of the actions

examined, while the new version of the planner treats them as wel
Moreover, inLPG-1PC3, the Num_acts-value of every unsupported
numerical precondition is always 1, while in the new version it is
estimated more accurately.

3.3 Search Restarts for Improving Plan Quality

LPG produces a succession of valid plans obtained by appropriatel
restarting the search when it finds a plan. Each plan is an improw:
ment of the previous ones in terms of its quality. The first plan gen
erated is used to initialize a new search for a second plan of bett

e

&onditions when choosing the actions forming the relaxed plans.

minimize the plan metric, and it is negative when it tries to maxi-
mize it. This sign is automatically set, and allowsG to find good
quality plans for both minimization and maximization problems. In
particular, as we will show in the next section, by appropriately set-
ting the sign of the execution cost and using the simple restart strat-
egy introduced above,PG solves all problems of the HardNumeric
Satellite domain very efficiently in terms of plan quality.

4 Experimental Results

a'Il'he techniques presented in the previous sections are implemented

in a new version of PG. In this section, we give some experimen-
tal results illustrating the performance oG using theNumeric
and HardNumeric variants of the 3rd IPC test problems. These
problems belong to the domailepots , DriverLog , Rovers ,
Satellite , Settlers  andZenotravel .*

The results for.PG correspond to median values over five runs
for each problem considered. The performanceré was tested

in terms of both CPU-time required to find a solutiarr¢-speed)
and quality of the best plan computadG-quality), using at most 5
CPU-minutes.

| LPG-1PC3 does not include the extension of the neighborhood eval-
uation for handling numerical expressions that we have presented.
In particular, in that version of the planner, the heuristic evaluation
of each NA-graph in the neighborhood simply ignores the numer-
ical preconditions thabecomeunsatisfied as a negative side effect
of removing the inconsistency under consideration. (E.g., if we add
an actiona at a levell of the current NA-graph4, anda has the
Qumerical effectdecrease(x,50) , it could be that the numerical

ec_)reconditioru > 60 of another action at a level afttbecomes un-

supported.) Moreover,PG-I1PC3 does not consider numerical pre-

The new heuristic functionBvalAdd, EvalDel, andRelaxedNum-

quality, and so on. This is a process that incrementally improves the ' X k alre i
quality of the plans, and that can be stopped at any time to give thBlan introduced in this paper lead to significant |mprovements of
best plan computed so far. Each time we start a new search, sonfia¢ Performance ofpG. The percentage of the numerical problems
inconsistencies are forced in the NA-graph representing the best plaiP!Ved PYLPG-1PC3is 59.9%, while this percentage with the new ver-
IT computed so far, and the resulting NA-graph is used to initialize 210N OfLPGis 93.2%; the percentage of the problems where the new
new search.

For plan metric expressions requiringnimizinga numerical ex-
pressionLPG removessome actions fronil, preferring those with

4 For a description and formalization of

www.dur.ac.uk/d.p.long/competition.html
5 All tests were conducted on a Plll Intel 866 Mhz with 512 Mbytes of RAM.

these domains,

see
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Figure 4. Number of problems solved and performance @&-speed (upper plots) ang G-quality (bottom plots) compared with Metrigr, MIPS and
LPG-IPC3in Rovers Numeric,Settlers ~ Numeric, andSatellite HardNumeric. On the x-axis, we have problem names indicated with numbers. On the
y-axis, we have CPU-time (log scale) or plan quality measured using the metric specified in problem formalizations. The plan nirgriessfoand
Settlers  require to minimize a numerical expression, while the plan metric oSttellite problems require to maximize a numerical expressions.

version ofLPG is at least one order of magnitude faster thae- sion of LPG is much better than the quality of the plans generated by
IPC3is about 40%, while this percentage farG-1PC3 is 0%; finally, MIPS.

in terms of plan quality, the new version obG performs generally

better than.PG-1PC3. 5 Conclusions

Table 1 compares the performanceLefc and MetricFF [6]. In . R N . .
. . - The capability of planning in domains involving humerical expres-
terms of CPU-timeLPG and MetricFF perform similarly. The per- . : . . .
sions is very important for addressing real-world problems. In this

centage of the problems where our planner is faster is 42%, whilé .
for Metric-FF this percentage is 47.5%. However, the percentage OFaper, we have presented the graph-based representation by

- : .__for handling plans involving numerical quantities, and some new lo-
the problems wherepaG is at least one order of magnitude faster is gp g q ’

27.8%, while for Metricrr this percentage is only 6.2%. Moreover, cal sear(_:h techniques for plqnning u_sing this representation.
the percentage of the problems solved is 93.2% fos, 68.5% for Experimental results obtained using the test problems of the 3rd

Metric-FF. In terms of plan qualityLPG performs generally better planning competition show that our system performs very well with

than MetricFF: the percentage of the problems where produces rgspect to Metric+ andM'.PS’ and it significantly improves the ver-

a plan of better quality is 83.2%, while for Metrie=this percentage sion ofLPG that took partin the competition.

is only 5.9%.
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