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Abstract
The ability to express “derived predicates” in the formaliza-
tion of a planning domain is both practically and theoretically
important. In this paper, we propose an approach to planning
with derived predicates where the search space consists of
“Rule-Action Graphs”, particular graphs of actions and rules
representing derived predicates. We present some techniques
for representing rules and reasoning with them, which are in-
tegrated into a method for planning through local search and
rule-action graphs. We also propose some new heuristics for
guiding the search, and some experimental results illustrating
the performance of our approach. Our proposed techniques
are implemented in a planner that took part in the fourth In-
ternational Planning Competition showing good performance
in many benchmark problems.

Introduction
In classical domain-independent planning, derived predi-
cates are predicates that the domain actions can only indi-
rectly affect. Their truth in a state can be inferred by partic-
ular axioms, that enrich the typical operator description of a
planning domain.

As discussed in (Thiebaux, et al. 2003; Edelkamp &
Hoffmann 2004), derived predicates are practically useful
to express in a concise and natural way some indirect ac-
tion effects, such as updates on the transitive closure of a
relation. Moreover, compiling them away by introducing ar-
tificial actions and facts in the formalization is infeasible be-
cause, in the worst case, we have an exponential blowup of
either the problem description or the plan length (Thiebaux,
et al. 2003). This suggests that it is worth investigating new
planning methods supporting derived predicates, rather than
using existing methods with “compiled” problems.

The first version of PDDL, the language of the Interna-
tional Planning Competitions, supports derived predicates as
particular “axioms”, and the recent PDDL2.2 (Edelkamp &
Hoffmann 2004) version re-introduces them as one of the
two new features for the benchmark domains of the 2004
International Planning Competition (IPC-4). Some methods
for handling derived predicates have been developed and im-
plemented in several planning systems, such as UCPOP(Bar-
rett, et al. 1995) and the very recent planners DOWNWARD,
SGPLAN and MARVIN (Edelkamp, et al. 2004).

In this paper, we present some techniques for planning
with derived predicates, which are implemented in a new
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version of the LPG planner (Gerevini, et al. 2003) called
LPG-td. Representing derived predicates in forward search
planners is not difficult, because the current state is fully
known (Edelkamp & Hoffmann 2004; Thiebaux, et al.
2003). However, in backward planners or non-directional
planners like LPG and many other systems this is not triv-
ial, because such planners work withpartial descriptions of
the world states. Moreover, since our general goal is fast
planning, it is important to manage derived predicates effi-
ciently and effectively in the search heuristics. This can be
a complex task for both forward and non-forward planners.1

The main contributions of this work are (i) a method based
on AND-OR-graphs for representing and managing the do-
main rules defining the derived predicates in the domain for-
malization (2nd section); (ii) a plan representation for do-
mains with derived predicates based on particular graphs
called rule-action graphs(3rd section); (iii) some tech-
niques exploiting particular relaxed plans for the heuristic
evaluation and restriction of the search neighborhood (4th
section); (iv) some experimental results illustrating the ef-
fectiveness of our techniques (5th section).

Derived Predicates and the Rule Graph

In PDDL2.2, derived predicates are particular predicates that
do not appear in the (positive or negative) effects of any do-
main action. The truth value of a derived predicate is deter-
mined by a set ofdomain rulesof the formif Φx thenP (x),
whereP (x) is the derived predicate,x is a tuple of vari-
ables, the free variables inΦx are exactly the variables inx,
andΦx is a first-order formula such that the negated normal
form (NNF) of Φx does not contain any derived predicate
in negated form. (In a NNF formula, negation occurs only
in literals.) The last syntactic restriction has the semantical
motivation of ensuring that there is never a negative inter-
action between the application of rules in a world state (for
more details see (Edelkamp & Hoffmann 2004)).

Figure 1 shows a typical example of a derived predicate
(above ) in the blocks world. A blockx is above y, if x is
on y, or it is on a third blockz, which isabove y. Above is
the transitive closure of theon relation.

1A derived predicate could be realized in different ways and,
generally, more than one action is needed to achive it; in this case,
the reachability information defined by a relaxed planning graph,
like in the FF planner, could be inaccurate and the search could be
guided toward a wrong direction. E.g., it happens for the derived
goal(not (affected ?b)) in thePSRtest problems of IPC-4.



if on(x, y) ∨ ∃ z
(
on(x, z) ∧ above(z, y)

)
then above(x, y)

A

B

C

D

s = { ontable(A) , ontable(D) ,
on(C,D) , above(C,D) ,
on(B,C) , above(B,C) ,
above(B,D) }

Figure 1: Example of a domain rule deriving a predicate
in the blocks world, and of a states where above(B,C) ,
above(C,D) , andabove(B,D) are ground derived predicates.

In the rest of the paper, we call a ground predicate appear-
ing in the initial state, problem goals, or in the preconditions
or effects of a domain action abasic fact; we call a ground
derived predicate obtained by substituting each variable in
the derived predicate of a rule with a constant aderived fact.

A grounded ruleis a rule where every predicate argument
is a constant. Given a ruler = (if Φx thenP (x)) and a tuple
of constantsc (|x| = |c|), we can derive an equivalentset
of grounded rulesΓ by substituting inr thec-constants for
the correspondingx-variables, and applying the following
transformations to the resulting rule:
• Φc is transformed into negated normal form;
• Each literal with an existentially quantified variable is re-

placed by a disjunction of literals where the variable is
substituted by a constant of the planning problem (one
disjunct for each constant);

• Each literal with a universally quantified variable is re-
placed by a conjunction of literals obtained by substitut-
ing the variable with every constant of the planning prob-
lem (one conjunct for each constant);

• Φc is transformed into disjunctive normal form:Φc =
φ1 ∨ ... ∨ φk, whereφi is a ground literal (1 ≤ i ≤ k);

• For eachφi in Φc, the grounded ruleif φi thenP (c) is
added toΓ.
Given a planning problem and a setR of rules defining

the derived predicates of the domain, we can then derive an
equivalent setR of grounded rules. We call the left hand
side (LHS) of each rule inR the triggering conditionof the
rule, and the conjoined facts forming the LHS of the rule the
triggering factsof the rule.

We represent the domain grounded rulesR through aRule
Graph, which is defined as follows.

Definition 1 The rule graph R of a planning problemΠ
with derived predicates defined by a set of rulesR is a di-
rectedAND-OR-graph such that:
• AND-nodes are either (i) leaf nodes labeled by basic facts

ofΠ, or (ii) nodes labeled by derived facts ofΠ; OR-nodes
are labeled by grounded rules inR and are not leaf nodes.

• EachAND-nodep is connected to a set ofOR-nodes rep-
resenting the grounded rules derivingp. EachOR-node
labeledr is connected to a set ofAND-nodes representing
the triggering condition ofr.

Figure 2 gives an example of a rule graph. For in-
stance, the nodes labeledon(A,D) and above(D,C) are
AND-nodes representing the triggering condition of ruler1.
above(D,C) is a derived fact that can be obtained by ap-
plying three rules (r4, r5 or r6) represented by threeOR-
nodes with incoming edges from theAND-node labeled
above(D,C) .

on(A,C)on(A,D) above (D,C) above (B,C)

r1 r2 r3

above (A,C)

on(A,B)

on(B,A)on(B,D) on(B,C)

r9r8r7

on(D,A)

r4 r5 r6

on(D,B)on(D,C)

Grounded Rules (Or-Nodes ofR)
r1: if on(A,D) ∧ above(D,C) thenabove(A,C)

r2: if on(A,C) thenabove(A,C)

r3: if on(A,B) ∧ above(B,C) thenabove(A,C)

r4: if on(D,A) ∧ above(A,C) thenabove(D,C)

r5: if on(D,C) thenabove(D,C)

r6: if on(D,B) ∧ above(B,C) thenabove(D,C)

r7: if on(B,D) ∧ above(D,C) thenabove(B,C)

r8: if on(B,C) thenabove(B,C)

r9: if on(B,A) ∧ above(A,C) thenabove(B,C)

Figure 2:A portion of the rule graph for a blocks world domain
with the domain rule and objects of Figure 1. Circle nodes repre-
sentOR-nodes; square nodes representAND-nodes. Multiple edges
joined by an arc connect a domain rule to a set ofAND-nodes rep-
resenting the triggering condition of the rule.

Given a states, and a set of domain rulesR, we denote
with D(s,R) the set of the derived facts obtained by apply-
ing the rules inR to s with an arbitrary order until no new
fact can be derived. In other words,D(s,R) is the least-
fixed point over all possible applications of the rules to the
state where the derived facts are assumed to be false (be-
cause under the closed world assumption, they do not be-
long to s). An algorithm for derivingD(s,R) is given in
(Edelkamp & Hoffmann 2004).

In the following, we will abbreviates∪D(s,R) |= ψ with
s |=R ψ, where|= is the logical entailment under the closed
world assumption ons, andψ is a (basic or derived) fact.

A Plan-based Search Space
Like in partial-order causal-link planning, e.g., (Penberthy
& Weld 1992; McAllester & Rosenblitt 1991; Nguyen &
Kambhampati 2001), in our approach we search in a space
of partial plans, where each search state is a particular graph
representing a plan under construction. In this section, we
present our plan representation for domains with derived
predicates, and the basic search steps (graph modifications)
for exploring the search space.

Search State: Rule-Action Graph
We represent a (partial) plan in a domain with derived pred-
icates through an extension of the linear action graph rep-
resentation (Gerevini, et al. 2003), which we callRule-
augmented Action Graphor, shortly,Rule-Action Graph.

A linear action graphA for a planning problemΠ is a di-
rected acyclic leveled graph alternating afact leveland an
action level. Fact levels containfact nodes, each of which is
labeled by a ground predicate ofΠ. Each fact nodef at a
level l is associated with ano-opaction node at levell rep-
resenting a dummy action having the predicate off as its
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ACTIVATED RULES:
r1: if p3 thend1, r2: if p6 thend3, r3: if d3 ∧ p4 thend4

Figure 3: A simple example of a rule-augmented action graph.
Square nodes are action nodes; diamond nodes are rule nodes;
circle nodes are (basic or derived) fact nodes. The square nodes
marked by the factsp1, p3, andp4 are no-op nodes. Dashed edges
form chains of no-ops (rule nodes) that are blocked (deactivated)
by mutex relations.

only precondition and effect. Each action level contains one
action node labeled by the name of a domain action that it
represents, and the no-op nodes corresponding to that level.
An action node labeleda at a levell is connected by (i) in-
coming edges from the fact nodes at levell representing the
preconditions ofa (precondition nodes), and (ii) by outgo-
ing edges to the fact nodes at levell + 1 representing the
effects ofa (effect nodes). The initial level contains the spe-
cial action nodeastart, and the last level the special action
nodeaend. The effect nodes ofastart represent the positive
facts of the initial state ofΠ, and the precondition nodes of
aend the goals ofΠ.

A pair of action nodes (possibly no-ops) can be related by
apersistent mutex relation, i.e., a mutually exclusive relation
holding at every level of the graph and imposing that the
involved actions never occur in parallel in a valid plan.2

The definition of linear action graph can be made stronger
by observing that the effects of an action node can be auto-
matically propagated to the next levels of the graph through
the corresponding no-ops, until there is aninterfering ac-
tion “blocking” the propagation, or the goal level has been
reached (Gerevini, et al. 2003).
Definition 2 A rule-action graph (RA-graph) of a problem
Π with derived predicates is a linear action graph where
• each fact level can contain two additional types of nodes:

rule nodesandderived nodes;
• each rule node is labeled by a grounded rule ofΠ, and

each derived nodeis labeled by the fact derived by a
grounded rule ofΠ;

• each rule node labeledr at a levell is connected by in-
coming edges to a set of fact nodes atl representing the
triggering facts ofr, and by an outgoing edge to a derived
node atl representing the ground predicate derived byr.
2Such relations are pre-computed by an extension of the algo-

rithm given in (Gerevini, et al. 2003) handling derived predicates.

We call an action precondition node representing a de-
rived fact aderived precondition node, and a node repre-
senting a triggering fact of a grounded ruletriggering node.

Figure 3 gives an example of an RA-graph containing five
action nodes, several fact nodes, some derived nodes repre-
senting four derived facts (d1...4), and some rule nodes rep-
resenting three grounded rules.

The rule nodes are automatically “activated” whenever
the corresponding triggering nodes are supported, i.e., a rule
node is inserted at a level of the graph (together with its de-
rived fact node, if not already present) whenever its trigger-
ing nodes are all supported at that level. Notice that the no-
op propagation can affect the activation of a rule at any level
where the corresponding fact is propagated.

In the following,S(l) indicates the world state obtained
(under the closed world assumption) by applying to the
problem initial state the actions in the RA-graph up to level
l − 1, ordered according to the level of their action node.
Definition 3 A grounded ruler = (if ϕ1 ∧ · · · ∧ ϕn thenψ)
is activatedat a levell of an RA-graphA iff, for each literal
ϕi in r, eitherS(l) |= ϕi or there exists an activated rule at
l that derivesϕi.

For instance, in the RA-graph of Figure 3, ruler1 is acti-
vated at levels 1 and 2, rulesr2 andr3 are activated at level
3, while ruler2 is not activated at the goal level because of
a3 blocking the propagation ofp6.

Each RA-graph represents the partial plan formed by the
actions associated with its action nodes, and can contain
someflaws. A flaw at a levell of an RA-graphA is a precon-
dition node of the action node at levell that is not supported
in A. If a level of an RA-graph has no flaw, we say that this
level isflawless.

A basic fact node labeledq at a levell is supportedif there
is an action node at levell − 1 representing an action with
(positive) effectq. A derived precondition nodep at a level
l of an RA-graph is supported if and only if there is a rule
noder at l such thatp is the derived node ofr. This is the
case if and only ifS(l) |=R ψp, whereψp is the derived fact
represented byp. An RA-graph without flaws represents a
valid plan and it is calledsolution RA-graph.
Definition 4 A solution RA-graph (valid plan) of a plan-
ning problemΠ with derived predicates is a rule-action
graphA of Π such that all levels ofA are flawless.

Search Steps for RA-graphs
Given an RA-graphA (search state) containing some flawed
level(s), we can generate new RA-graphs (successor search
states) by adding or removing an action nodehelping to re-
pair a flawed level ofA. When we add an action node to a
level l of the RA-graph, the graph is extended by one level
and the nodes and edges at each levell′ ≥ l are shifted one
level forward. Similarly, when we remove an action nodea,
the RA-graph is “shrunk” by one level.

The definition ofHelpful Action Node, that we can add to
A, and ofHarmful Action Node, that we can remove fromA,
relies on the notion ofActivation Fact Set(shortlyActivation
Set). An activation set is a set of basic facts activating a set
of rule nodes supporting a derived precondition node.
Definition 5 Given an unsupported derived precondition
noded at a levell of an RA-graph, anactivation fact setfor
d is a minimal setF of basic facts such thatS(l)∪F |=R ψd,
whereψd is the derived fact represented byd.



And-Search(n, A,PathNodes,Open, s)
Input: An AND-node of the AND-OR rule graphR (n), the acti-

vation set under construction (A), the set of AND-nodes ofR on
the search tree path from the search tree root ton (PathNodes),
the set of nodes to visit forA (Open), and a world state (s);

Output: An element of the activation set under construction,false,
or the empty set.

1. if n ∈ PathNodesthen return false;
2. if s |=R n then return ∅;
3. else ifn is a basic factthen return n;
4. foreachsuccessorn′ of n inR do
5. Or-Search(n′, A, PathNodes ∪ {n}, Open, s);
6. return false.

Or-Search(n, A,PathNodes,Open, s)
Side Effect: Update of the set of activation sets (Σ)

1. Open← Open∪ {n′ | n′ is a successor ofn inR};
2. foreach t ∈ Opendo
3. Open← Open\{t};
4. n′ ← And-Search(t, A, PathNodes, Open, s);
5. if n′ = falsethen return ;
6. elseA← A ∪ {n′};
7. Σ← Σ ∪ {A}.

Figure 4:Algorithms for computing the activation sets (stored in
the global variableΣ) of a derived precondition node by searching
on the rule graphR.

For example, suppose thatr4= (if p1∧d5 thend2) andr5=
(if p3 ∧ p9 thend5) are two additional (inactive) rules for the
RA-graph of Figure 1. Then{p1, p9} is an activation set for
d2 at level2 of the graph. Note thatp3 is not in the activation
set ford2, because at level2 it is already supported.

Definition 6 Given a flawed levell of an RA-graphA, we
say that an action node ishelpful for l if its insertion intoA
at a leveli ≤ l supports (i) a basic unsupported precondition
node atl, or (ii) an (unsupported) node representing a fact
in an activation set for an unsupported derived precondition
node atl.

For example, an action node representing an action with
effectp1 is helpful for level3 of the RA-graph of Figure 3,
if it is inserted into level2 or 3.

Definition 7 Given a flawed levell of an RA-graphA, we
say that an action node at a leveli ≤ l is harmful for l if
its removal fromA either (i) would remove the unsupported
precondition nodes atl (i = l), or (ii) would make an un-
supported fact nodef at l supported, wheref is a basic
precondition node, or it represents a fact in an activation set
for a derived precondition node atl.

For example, the action nodea3 of Figure 3 is harmful for
level3, because of the unsupported precondition nodep1 of
a3; a3 is harmful for the goal level too, because it breaks the
no-op propagation ofp6 at level3, that would activate the
rule r2 supporting the derived noded3 at the goal level.

We can identify the activation sets of a derived precondi-
tion noded at a levell by using the two mutually recursive
algorithms described in Figure 4. These algorithms perform
a complete backward search on the rule graph.And-Search
visits anAND-noden of the rule graph and returns: (i)false,
if n is a node already visited on the path from the root search
tree ton (n ∈ PathNodes), and hence the search is pruned to
avoid looping; (ii)∅, if n represents a fact that is entailed by

S(l) ∪ D(S(l), R); (iii) n, if the previous cases do not ap-
ply andn is a basic fact (that will belong to the activation set
under construction); (iv)false, otherwise (n together with its
sibling AND-nodes have already been visited).

Or-Search visits anOR-node of the rule graph, and incre-
mentally updates the set of activation sets, which are stored
in the global variableΣ (initially set to the empty set). For
example, ifs defines the state described in Figure 1,And-
Search(above(A,C) ,∅,∅,∅,s) searches in the portion of the
rule graph of Figure 2, and identifies the set of possible acti-
vation sets ofabove(A,C) : Σ = {{on(A,B) }, {on(A,C) },
{on(A,D) , on(D,C) }, {on(A,D) , on(D,B) }}.

Note that, the maximum size ofΣ depends on the plan-
ning problem and on the search states visited during the
search process. In the worst case, the size ofΣ can be ex-
ponential in the number of the problem objects involved by
the grounded rules. However, in practice, for all the prob-
lems we tested from the IPC-4, the number of activation sets
is polynomial. More on this in the experimental results sec-
tion.

Local Search in the Space of RA-Graphs
The general scheme for searching a solution graph (a final
state of the search) consists of a local search process in the
space of all RA-graphs of the planning problem, starting
from an initial RA-graph containing onlyastart andaend.

Each basic search step identifies the neighborhood
N(l,A) of the current RA-graphA for a flawed levell, i.e.,
the set of the RA-graphs obtained fromA by adding a help-
ful action node forl, or by removing a harmful action node.
The elements of the neighborhood are weighed according to
a heuristic evaluation functionestimating their quality, and
an element with the best quality is then considered as the
next possible RA-graph.

The basic search procedure that we use for searching RA-
graphs isWalkplan (Gerevini, et al. 2003), a randomized
procedure using anoise parameterp to escape from local
minima. Given an RA-graphA and a flawed levell, if there
is a modification helping to repairl that does not decrease
the quality ofA, then the corresponding RA-graph is cho-
sen as the next search state. Otherwise, with probabilityp
one of the graphs inN(l,A) is chosen randomly, and with
probability1 − p the next RA-graph is chosen according to
the minimum value of the evaluation function.

Some heuristic evaluation functions for action graphs are
proposed in (Gerevini, et al. 2003). In this section, we in-
troduce a new heuristic function (E) for RA-graphs. The
main differences with respect to the previous functions are:
E gives a more accurate estimate of the search cost by taking
account ofall the flaws at a given level of the graph, instead
of only one flaw;E estimates the search cost for supporting
derived preconditions (derived nodes), which are not han-
dled by the previous functions.

Relaxed Plans for RA-Graphs
The general idea for estimating the cost of making a levell
flawless is to construct a relaxed planπ for the set of facts
represented by the unsupported precondition nodes atl.

Suppose that we are evaluating the RA-graph obtained by
adding an action nodea to a levella, because it is helpful
for l in the current RA-graphA (la ≤ l). E uses a relaxed
planπ to compute an estimate of a minimal set of new action
nodes required to support



RelaxedPlan(G, I, A)
Input: A set of goal facts (G), an initial state for the relaxed plan
(I), a set of reusable actions (A);

Output: A set of actionsActs forming a relaxed plan forG from I

1. G← G− I; Acts← A;
2. F ←

⋃
a∈Acts Add(a);

3. F ← F ∪D(I ∪ F, R);
4. while G− F 6= ∅
5. if g is a basic fact inG− F then
6. b← BestAction(g);
7. Rplan← RelaxedPlan(Pre(b), I, Acts);
8. Acts← Aset(Rplan) ∪ {b};
9. F ←

⋃
a∈Acts Add(a);

10 F ← F ∪D(I ∪ F, R);
11. else/* g is a derived fact */
12. Σ← ∅; /* Σ is a set of activation sets forR */
13. And-Search(g, ∅, ∅, ∅, I ∪ F ); /* UpdateΣ */
14. H ← BestActivationSet(Σ);
15. G← G− {g} ∪ {H};
16. return Acts.

Figure 5:Algorithm for computing a relaxed plan achieving a set
of preconditionsG from the stateI using the domain rulesR.

(1) the unsupported precondition nodes ofa,
(2) the flaws remaining atl after addinga toA, and
(3) the supported precondition nodes of other action nodes

in A that would becomeunsupported by addinga.

The larger such a set is, the higher is the estimated cost.
Note that the heuristic functions previously proposed for
action graphs donot consider (2). The new heuristic re-
laxes the “flaw-independence assumption”, which in some
domains is invalid and can mislead the search cost evalua-
tion. This is particularly true for flaws at the same level: the
way we repair a single flaw can affect the search cost of the
other flaws at the same level.3

π is relaxedin the sense that it does not consider the neg-
ative interference between the actions ofπ and the domain
rules activated by the positive effects of the actions ofπ. The
initial state forπ is obtained by applying the actions ofA up
to levella−1, ordered according to their corresponding lev-
els, and activating the possible domain rules.

The evaluation of an RA-graph in the search neighbor-
hood that is derived by removing a harmful action nodea is
similar, and its description is omitted for lack of space.

Figure 5 shows theRelaxedPlan algorithm for computing
relaxed plans.Pre(a) denotes the set of facts corresponding
to the preconditions ofa, while Add(a) the set of the posi-
tive effects of the action represented bya. LetSR(l) indicate
the stateS(l)∪D(S(l), R), whereR is the set of the domain
rules;l is the flawed level under reparation by adding an ac-
tion a to level la. RelaxedPlan constructs a relaxed plan
through a recursive backward process. The action chosen at
step 6 to achieve abasic(sub)goalg is an actionb such that
(i) g is an effect ofb; (ii) all preconditions ofb are reachable
fromSR(la); (iii) it requires an estimated minimum number
of additional actions required to support its preconditions
from SR(la); (iv) b subverts the minimum number of sup-
ported (basic or derived) precondition nodes ofA. (iii) is

3An experimental analysis showed that the inclusion of (2)
leads to significant speeds up in many benchmark problems. For
lack of space, we omit these results (part of which are given in
(Gerevini, et al. 2005)).

computed as described in (Gerevini, et al. 2003).
When the (sub)goalg is aderivedfact (steps 11–15),Re-

laxedPlan computes the setΣ of the activation sets forg,
and it constructs a relaxed plan for the facts contained in the
bestactivation setH ∈ Σ (steps 12–14). In particular, the
algorithm usesAnd-Search to computeΣ (step 13), and then
selects fromΣ a setH such that (i) all facts inH are reach-
able fromSR(la); (ii) their reachability requires a minimum
number of actions; and (iii) the insertion of an actionah to
achieve a factsh inH threats a minimum number of precon-
dition nodes in the RA-graph.

Pruning the Neighborhood and the Activation Sets
In general, the effectiveness of a heuristic function evalu-
ating the elements of the search neighborhood can be sig-
nificantly affected by the size of the neighborhood: if this
is too large, the neighborhood evaluation might require too
much time. Since the number of activations sets for an un-
supported derived preconditionsp can in principle be very
high, there might be many helpful actions forp, which could
lead to a very large search neighborhood.

We have developed a heuristic method which evaluates
the activation sets ofp to select the “easiest one” to support
in terms of search cost. Assume that at the flawed level under
consideration we have a setU of unsupported precondition
nodes. For each derived noded in U , we chooseoneof its
activation sets by evaluating each of them usingRelaxedPlan
with the activation set as goal set. The selected activation set
is one with the best relaxed plan (fewest number of actions
and threats).

Moreover, during the generation of the activation sets, we
prune those containing facts that are mutex with the precon-
ditions at the flawed levell under consideration. (If this were
the case, the truth of the facts in the activation set would
make it impossible to support all precondition nodes atl.) In
addition, when we search the rule graph we pre-evaluate the
activation sets using reachability information fromSR(l).
The reachability cost of an activation set is defined as the
maximum over the reachability cost of its facts. During their
generation, the activations sets with cost exceeding the best
set computed so far are pruned.

Experimental Results
In this section, we present some experimental results ob-
tained using test domains and problems from IPC-4 and IPC-
3, which illustrate the effectiveness of our techniques imple-
mented in the LPG-td planner.4

Figure 6 shows the CPU-time (in logarithmic scale) of
the IPC-4 planners forPhilosophers and PSR-Middle .
In the first domain, both LPG-td and DOWNWARD solve
48 problems, while MARVIN solves 30 problems. LPG-td
is generally faster than the other planners, except for a few
problems where DOWNWARD performs better than LPG-td.
In PSR-Middle both SGPLAN and LPG-td solve all prob-
lems, but LPG-td is generally faster. Concerning plan qual-
ity, overall the plans generated by LPG-td are comparable to
the plans generated by the other planners.

An interesting question is how many activation sets are
generated in practice for a derived precondition (i.e., how

4For a description and formalization of these benchmark do-
mains and problems, see the official web pages of IPC-3 and IPC-
4.
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Figure 6: Performance of LPG-td and some IPC-4 planners in three benchmark domains involving derived predicates. On the x-axis we
have the problem names (abbreviated by numbers). On the y-axis, we have CPU-time (log scale).
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Figure 7:CPU-time of LPG-td with/out pruning of the activation
sets forDepots with derived predicates.

Domains µΣ (No Pruning) µΣ σΣ CPU-time
Depots 330,597 35 461 5%
Philosophers 7 7 0 2%
PSR 275 259 3635 13%

Table 1:Number of activation sets without pruning for a derived
precondition (mean), number of activation sets with pruning (mean
and standard deviation), and average % of total CPU-time for de-
riving them with pruning inDepots , Philosophers andPSR.

largeΣ is). DespiteΣ can be exponentially large, we have
experimentally observed that, for all the IPC-4 test problems
attempted by LPG-td,|Σ| was less than1.2 ·n2, wheren is
number of the objects involved by the grounded rules. In the
IPC-4 problems, the pruning techniques ofΣ are not very
effective, but the additional overhead is generally negligible.

To test the pruning techniques ofΣ in a domain that can
generate many more activation sets, we extended the IPC-
3 domainDepots by adding derived predicates to it, and
we modified the IPC-3 problems by replacing several “on”
goals with the corresponding “above ” goals, whereabove
is a derived predicate. The 3rd plot of Figure 6 shows the
performance of LPG-td and SGPLAN in the modified do-
main. Overall, the planners perform similarly, but LPG-td
solves more problems, and in few cases it is significantly
faster than SGPLAN . Figure 7 shows the usefulness of prun-
ing in Depots . LPG-td with the pruning is generally faster
and solves more problems.

Table 1 gives some statistical data on the size of the ac-
tivation sets over all the test problems considered. Without
pruning, inDepots the size ofΣ can be up to four orders of
magnitude larger, while in the other domains it is not signif-
icantly larger.

Finally, some experimental tests show that managing de-
rived predicates in LPG-td using our methods (instead of
compiling them away) significantly reduces planning time,

confirming the obervation in (Thiebaux, et al. 2003).

Conclusions
We have presented some new techniques aimed at fast plan-
ning in domains involving derived predicates. Our meth-
ods extend the “planning through action graphs and local
search” approach by (i) including a rule graph to support rea-
soning about derived predicates in the search states produced
by the plan actions; (ii) augmenting the action graph repre-
sentation with additional nodes and arcs representing (auto-
matically triggered) domain rules; (iii) defining a new search
space formed by such augmented action graphs, (iv) design-
ing new heuristics to guide a local search process. These
techniques are implemented in the LPG-td planner, which
showed good performance in many benchmark problems.

We believe that our methods to handle derived predicates
can be potentially useful for other non-directional or back-
ward approaches to planning, and future work includes this
investigation. For instance, the rule-graph and the activation
fact set could be used in the Graphplan-based search phase
to define the subgoals during regression in problems with
derived predicates.

References
Barret, A., Christianson, D., Friedman, M., Kwok, C., Golden,
K., Penberthy, S., Sun, Y., Weld, D. 1995. UCPOP User’s Manual
T.R. 93-09-08d, Univ. of Washington, Computer Science Dept.
Blum, A., and Furst, M. 1997. Fast planning through planning
graph analysis.Artificial Intelligence90:281–300.
Edelkamp, S., Hoffmann, J., Littman, M., Younes, H. (Eds.)
2004. In Abstract Booklet of the IPC-4 Planners (ICAPS-04).
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The language
for the Classic Part of the 4th International Planning Competition.
T.R. no. 195: Institut für Informatik, Freiburg, Germany.
Fox, M., and Long, D. 2003 PDDL2.1: An Extension to PDDL
for Expressing Temporal Planning DomainsJAIR20:61–124.
Gerevini, A., Saetti, A., and Serina, I. 2003. Planning through
Stochastic Local Search and Temporal Action Graphs.JAIR
20:239–290.
Gerevini, A., Saetti, A., Serina, I, and Toninelli, P. 2005. Plan-
ning with Derived Predicates through Rule-Action Graphs and
Relaxed-Plan Heuristics.T.R. 2005-01-40, DEA, Univ. Brescia.
McAllester, D., and Rosenblitt, D. 1991. Systematic nonlinear
planning. InProc. of AAAI-91.
Nguyen, X., and Kambhampati, S. 2001. Reviving partial order
planning. InProc. of IJCAI-01.
Penberthy, J., and Weld, D. 1992. UCPOP: A sound, complete,
partial order planner for ADL.Proc. of KR’92.
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