
Large-Scale Optimal PDDL3 Planning with MIPS-XXL

Stefan Edelkamp1, Shahid Jabbar2, and Mohammed Nazih3 ∗

Computer Science Department
University of Dortmund, Dortmund, Germany

Introduction
State trajectory and preference constraints are the two
language features introduced in PDDL3 (Gerevini &
Long 2005) for describing benchmarks of the 5th in-
ternational planning competition. State trajectory con-
straints provide an important step of the agreed frag-
ment of PDDL towards the description of temporal con-
trol knowledge and temporally extended goals They as-
sert conditions that must be met during the execution
of a plan and are often expressed using quantification
over domain objects.

We suggest to compile the state trajectory and prefer-
ence constraints into PDDL2 (Edelkamp 2006). Trajec-
tory constraints are compiled into Büchi automata that
are synchronized with the exploration of the planning
problem, while preference constraints are transformed
into numerical fluents that are changed upon violation.
An internal weighted best-first search is invoked that
tries to find a solution. Once a solution is found, the
solution quality is inserted in the problem description
and a new search is started using earlier solution cost as
the minimization parameter. If the internal search fails
to terminate with in a specified amount of time, we
switch to a cost-optimal external breadth-first search
procedure that utilizes harddisk to store the generated
states.

Compilation of State Trajectory
Constraints

State trajectory constraints impose restrictions on
plans. Their semantics can best be captured by using
a special kind of automata structure called as Büchi
automata. Büchi automata has long been used in
automata-based model checking (Clarke, Grumberg, &
Peled 2000), where both the model to be analyzed and
the specification to be checked are modeled as non-
deterministic Büchi automata. Syntactically, Büchi au-
tomata are ordinary automata, but with a special ac-
ceptance condition. Let ρ be a run and inf(ρ) be the
set of states reached infinitely often in ρ, then a Büchi

∗All three authors are supported by the German Re-
search Foundation (DFG) projects Heuristic Search Ed 74/3
and Directed Model Checking Ed 74/2.

automaton accepts, if the intersection between inf(ρ)
and the set of final states F is not empty. In automata-
based model-checking, a specification property is fal-
sified if and only if there is a non-empty intersection
between the language accepted by the Büchi automata
of the model and of the negated specification.

For trajectory constraints, we need a Büchi automa-
ton for the model and one for each trajectory con-
straints, together with some algorithm that validates
if the language intersection is not empty. By the se-
mantics of (Gerevini & Long 2005) it is clear that all
sequences are finite, so that we can interpret a Büchi
automaton as a non-deterministic finite state automa-
ton (NFA), which accepts a word if it terminates in a
final state. The labels of such an automaton are condi-
tions over the propositions and fluents in a given state.
During the exploration, we simulate a synchronization
of all Büchi automata.

To encode the simulation of the synchronized au-
tomata, we devise a predicate (at ?n - state ?a -
automata) to be instantiated for each automata state
and each automata that has been devised. For detecting
accepting states, we include instantiations of predicate
(accepting ?a - automata).

As we require a tight synchronization between the
constraint automaton transitions and the operators in
the original planning space, we include synchronization
flags that are flipped when an ordinary or a constraint
automaton transition is chosen.

Compilation of Preferences

For preference p we include numerical fluents
is-violated-p to the grounded domain description.
For each operator and each preference we apply the
following reasoning. If the preferred predicate is con-
tained in the delete list then the fluent is increased, if it
is contained in the add list, then the fluent is decreased,
otherwise it remains unchanged1.

1An alternative semantic to (Gerevini & Long 2005)
would be to set the fluent to either 0 or 1. For rather com-
plex propositional or numerical goal conditions in a prefer-
ence condition, we can use conditional effects.

For preferences p on a state trajectory con-
straint that has been compiled to an automaton a,
the fluents (is-violated-a-p) substitute the atoms
(is-accepting-a) in an obvious way. If the au-
tomata accepts, the preference is fulfilled, so the value
of (is-violated-a-p) is set to 0. In the transition that
newly reaches an accepting state (is-violated-a-p)
is set to 0, if it enters a non-accepting state it is set to
1. The skip operator also induces a cost of 1 and the
automaton moves to a dead state.

External Exploration
For complex planning problems, the size of the state
space can easily surpass the main memory limits. Most
modern operating systems provides a facility to use
larger address spaces through virtual memory that can
be larger than internal memory. For the programs that
do not exhibit any locality of reference for memory ac-
cesses, such general purpose virtual memory manage-
ment can instead lower down their performances.

Algorithms that explicitly manage the memory hier-
archy can lead to substantial speedups, since they are
more informed to predict and adjust future memory
access. In (Korf & Schultze 2005) we see a complete
exploration of the state space of 15-puzzle made pos-
sible utilizing a 1.4 Terabytes of secondary storage. In
(Jabbar & Edelkamp 2005) a successful application of
external memory heuristic search for LTL model check-
ing is presented.

The standard model (Aggarwal & Vitter 1988) for
comparing the performance of external algorithms con-
sists of a single processor, a small internal memory
that can hold up to M data items, and an unlim-
ited secondary memory. The size of the input problem
(in terms of the number of records) is abbreviated by
N . Moreover, the block size B governs the bandwidth
of memory transfers. External-memory algorithms are
evaluated in terms of number of I/Os, where each block
transfer amounts to one I/O.

It is convenient to express the complexity of external-
memory algorithms using a number of frequently occur-
ring primitive operations: Scanning, scan(N) with an
I/O complexity of Θ(N

B) that can be achieved through
trivial sequential access; Sorting, sort(N) with an I/O
complexity of Θ(N

B logM/B
N
B) that can be achieved

through external Merge or Distribution Sort.

Cost-Optimal External BFS
An implicit variant of Munagala and Ranade’s algo-
rithm (Munagala & Ranade 1999) for explicit BFS-
search in implicit graphs has been coined to the term
delayed duplicate detection for frontier search. It as-
sumes an undirected search graph. Let I be the ini-
tial state, and N be the implicit successor generation
function. Figure 1 displays the pseudo-code for exter-
nal BFS exploration incrementally improving an upper
bound U on the solution quality. The state sets corre-
sponding to each layer are represented in form of files.

Procedure Cost-Optimal-External-BFS
U ←∞; i← 1
Open(−1)← ∅; Open(0)← {I}
while (Open(i− 1) 6= ∅)

A(i)← N(Open(i− 1))
forall v ∈ A(i)

if v ∈ G and Metric(v) < U
U ← Metric(v)
ConstructSolution(v)

A′(i)← remove duplicates from A(i)
for l← 1 to loc

A′(i)← A′(i)\ Open(i− l)
Open(i)← A′(i)
i← i + 1

Figure 1: Cost-Optimal External BFS Planning Algo-
rithm.

The search frontier denoting the current BFS layer is
tested for an intersection with the goal, and this in-
tersection is further reduced according to the already
established bound.

Layer Open(i−1) is scanned and the set of successors
are put into a buffer of size close to the main memory
capacity. If the buffer becomes full, internal sorting fol-
lowed by a duplicate elimination scanning phase gener-
ates a sorted duplicate-free state sequence in the buffer
that is flushed to disk. A sets in the pseudo-code cor-
responds to temporary sets.

In the next step, external merging is applied to merge
the flushed buffers into Open(i) by a simultaneous scan.
The size of the output files is chosen such that a single
pass suffices. Duplicates are eliminated while merging.
Since the files were sorted, the complexity is given by
the scanning time of all files. One also has to elim-
inate the previous layers from Open(i) to avoid re-
computations. The number of previous layers that have
to be subtracted are dependent on the locality(loc) of
the graph. In case of undirected graphs, two layers are
sufficient. For directed graphs, we suggest to calculate
this parameter by searching for a sequence of operators
that when applied to a state produces no effect. Such a
sequence can be computed by just looking at all possible
sequences of operators. The length of the shortest such
sequence dictates the locality of a planning graph. The
process is repeated until Open(i−1) becomes empty, or
the goal has been found.

The I/O Complexity of External BFS for undirected
graph can be computed as follows. The successor
generation and merging involves O(sort(|N(Open(i −
1))|) + (

∑loc
l=1 scan(|Open(i − l)|) I/Os. However, since∑

i |N(Open(i))| = O(|E|) and
∑

i |Open(i)| = O(|V |),
the total execution time is O(sort(|E|)+ loc · scan(|V |))
I/Os.

In an internal non memory-limited setting, a plan
is constructed by backtracking from the goal node to
the start node. This is facilitated by saving with every

node a pointer to its predecessor. However, there is one
subtle problem: predecessor pointers are not available
on disk. This is resolved as follows. Plans are recon-
structed by saving the predecessor together with every
state, by using backtracking along the stored files, and
by looking for matching predecessors. This results in a
I/O complexity that is at most linear to the number of
stored states.

In planning with preferences, we often have a mono-
tone decreasing instead of a monotonic increasing cost
function. Hence, we cannot prune states with an eval-
uation larger than the current one. Essentially, we are
forced to look at all states. In order to speed up the
external search with a compromise on the optimality,
we can apply a procedure similar to beam-search where
we can limit our search to expand only a small portion
of the best nodes within each layer. On competition
problems, we have managed to have good accelerations
through this approach.

Implementation

We first transform PDDL3 files with preferences and
state trajectory constraints to grounded PDDL3 files
without them. For each state trajectory constraint, we
parse its specification, flatten the quantifiers and write
the corresponding LTL-formula to disk.

Then, we derive a Büchi-automaton for each LTL for-
mula and generates the corresponding PDDL code to
modify the grounded domain description2. Next, we
merge the PDDL descriptions corresponding to Bc̈hi
automata and the problem file. Given the grounded
PDDL2 outcome, we apply efficient heuristic search
forward chaining planner Metric-FF (Hoffmann 2003).
Note that by translating plan preferences, otherwise
propositional problems are compiled into metric ones.
For temporal domains, we extended the Metric-FF
planner to handle temporal operators and timed initial
literals. The resulting planner is slightly different from
known state-of-the-art systems of adequate expressive-
ness, as it can deal with disjunctive action time windows
and uses an internal linear-time approximate scheduler
to derive parallel (partial or complete) plans. The plan-
ner is capable of compiling and producing plans for all
competition benchmark domains.

Due to the numerical fluents introduced for prefer-
ences, we are faced with a search space where cost is not
necessarily monotone. For such state spaces, we have
to look at all the states to reach to an optimal solu-
tion. The issue then arises is if it is possible to reach an
optimal solution fast. We propose to use a branch-and-
bound like procedure on top of the best-first weighted
heuristic search as offered by the extended Metric-FF
planning system. Upon reaching a goal, we terminate
our search and create a new problem file where the goal
condition is extended to minimize the found solution

2www.liafa.jussieu.fr/∼oddoux/ltl2ba. Similar
tools include LTL→NBA and the never-claim converter in-
herent to the SPIN model checker.

cost. The search is restarted on this new problem de-
scription. The procedure terminates when the whole
state space is looked at. The rationale behind this is
to have improved guidance towards a better solution
quality. If internal search failed to terminate within a
specified amount of time, we switch to external BFS
search.

Conclusions
We propose to translate temporal and preference con-
straints into PDDL2. Temporal constraints are con-
verted into Büchi automata in PDDL format, and
are executed synchronously with the main exploration.
Preferences are compiled away by a transformation into
numerical fluents that impose a penalty upon violation.
Incorporating better heuristic guidance, especially, for
preferences is still an open research frontier.

Search is performed in two stages. Initially, an in-
ternal best-first is invoked that keeps on improving its
solution quality till the search space is exhausted. Af-
ter a given time limit, the internal search is terminated
and an external breadth-first search is started.

The crucial problem in external memory algorithms
is the duplicate detection with respect to previous lay-
ers to guarantee termination. Using the locality of
the graph calculated directly from the operators them-
selves, we provide a bound on the number of previous
layers that have to be looked at.

Since states are kept on disk, external algorithms
have a large potential for parallelization. We noticed
that most of the execution time is consumed while
calculating heuristic estimates. Distributing a layer
on multiple processors can distribute the internal load
without having any effect on the I/O complexity.

References
Aggarwal, A., and Vitter, J. S. 1988. The in-
put/output complexity of sorting and related prob-
lems. Journal of the ACM 31(9):1116–1127.
Clarke, E.; Grumberg, O.; and Peled, D. 2000. Model
Checking. MIT Press.
Edelkamp, S. 2006. On the compilation of plan con-
straints and preferences. In ICAPS. To Appear.
Gerevini, A., and Long, D. 2005. Plan constraints
and preferences for PDDL3. Technical Report R.T.
2005-08-07, Department of Electronics for Automa-
tion, University of Brescia, Brescia, Italy.
Hoffmann, J. 2003. The Metric FF planning sys-
tem: Translating “Ignoring the delete list” to numeri-
cal state variables. JAIR 20:291–341.
Jabbar, S., and Edelkamp, S. 2005. I/O efficient
directed model checking. In Conference on Verifi-
cation, Model Checking and Abstract Interpretation
(VMCAI), 313–329.
Korf, R. E., and Schultze, P. 2005. Large-scale parallel
breadth-first search. In AAAI, 1380–1385.
Munagala, K., and Ranade, A. 1999. I/O-complexity
of graph algorithms. In SODA, 687 – 694.

